mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex

نویسندگان

  • Monika Pema
  • Luca Drusian
  • Marco Chiaravalli
  • Maddalena Castelli
  • Qin Yao
  • Sara Ricciardi
  • Stefan Somlo
  • Feng Qian
  • Stefano Biffo
  • Alessandra Boletta
چکیده

Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair?

Recent work has uncovered a functional link between polycystin-1 (PC1), the protein affected in autosomal-dominant polycystic kidney disease (ADPKD) and tuberin, the protein affected in tuberous sclerosis complex (TSC). These data suggest that PC1 functions by inducing the formation of a complex with tuberin and the Ser/Thr kinase mTOR thereby inhibiting mTOR activity. In normal, adult kidney, ...

متن کامل

Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1.

Tuberous sclerosis complex (TSC) is a genetic disorder linked to mutations of either the TSC1 or TSC2 gene, which encode proteins that form a complex to negatively regulate mammalian target of rapamycin complex 1 (mTORC1). Clinically, a small percentage of TSC patients develop severe infantile polycystic kidney disease (PKD), which is believed to be caused by deletion of the contiguous TSC2 and...

متن کامل

The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway

Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which severe renal cystic disease can occur. Many renal cystic diseases, including autosomal dominant polycystic kidney disease (ADPKD), are associated with absence or dysfunction of the primary cilium. We report here that hamartin (TSC1) localizes to the basal body of the primary cilium, and that Tsc1(-/-) and Tsc2(-/-) mo...

متن کامل

Hyperactivated mTORC1 downregulation of FOXO3a/PDGFRα/AKT cascade restrains tuberous sclerosis complex-associated tumor development

Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), caused by loss-of-function mutations in either the TSC1 or TSC2 gene, leads to the development of tuberous sclerosis complex (TSC), a benign tumor syndrome with multiple affected organs. mTORC1-mediated inhibition of AKT constrains the tumor progression of TSC, but the exact mechanisms remain unclear. Herein we showed that los...

متن کامل

Tuberous Sclerosis Complex Suppression in Cerebellar Development and Medulloblastoma: Separate Regulation of Mtor Activity and P27 Localization

During development, proliferation of cerebellar granule neuron precursors (CGNPs), candidate cells-of-origin for the pediatric brain tumor medulloblastoma, requires signaling by Sonic hedgehog (Shh) and insulin-like growth factor (IGF), whose pathways are also implicated in medulloblastoma. One of the consequences of IGF signaling is inactivation of the mTOR-suppressing Tuberous Sclerosis Compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016